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Abstract
We investigate the relaxation of nonideal plasmas and demonstrate the
connection between the energy transfer rate and potential energy contributions.
A quantum-statistical approach is used to determine how the energies of the
electron and ion subsystems can be defined. In particular, it is shown that
the electron–ion potential energy term must be split equally between both
subsystems. We finally demonstrate that this treatment is consistent with the
transfer of total energy between the subsystems as it is for instance considered
within the coupled mode approach.

PACS numbers: 05.30.−d, 52.25.Kn, 52.25.Gj, 71.10.−w

1. Introduction

The relaxation of dense two-temperature plasmas has received new interest since modern
pump–probe experiments allow for very intense and short pulses as well as small, but well
defined, time delays for probe pulses. With these techniques, the relaxation stage when
electrons and ions have already established Fermi/Maxwell distributions but the different
species temperatures have not equilibrated is now experimentally accessible.

Early theoretical descriptions of temperature equilibration considered exclusively the
energy transfer through binary electron–ion collisions in hot plasmas [1, 2]. For weakly
coupled plasmas, numerical simulations could confirm the results of the Landau–Spitzer
(LS) approach [3, 4]. Using the Fermi-golden-rule approach, and thereby also considering
collective excitations, LS-like relaxation rates could be obtained for both classical plasmas
[5] and systems with degenerate electrons [6]. However, several experiments showed strong
indications for a much smaller energy transfer between electrons and ions in dense plasmas
[7–9]. Such reduced energy transfer rates were also theoretically predicted by an approach that
considered the coupling between the collective excitations in the electron and ion subsystems
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[10], whereas a fully quantum mechanical treatment of binary electron–ion collisions without
arbitrary cut-off procedures yields larger energy transfers [11, 12].

In addition to the modified energy transfer rates, equation of state effects, i.e. potential
energy contributions, can strongly influence the temperature equilibration process in dense
plasmas. The importance of the time-dependent binding energy in partially ionized plasmas
was demonstrated in [13–15], where the correlations between the carriers were included on
the lowest level with a Debye shift. Strong ion–ion correlations were also shown to result in
a much slower ion heating in systems with hot electrons and high ionization degree [16].

However, all these investigations used some ad hoc ansatz for the correlation energies
of the subsystems. While the relaxation process in weakly coupled (ideal) plasmas is mainly
determined by the energy transfer rates Zei, e.g. for classical plasmas by

3

2
nekB

∂

∂t
Te = Zei and

3

2
nikB

∂

∂t
Ti = −Zei, (1)

it is not obvious how to define the energies of the electron and ion subsystems in dense
plasmas due to the electron–ion term in the potential energy. Furthermore, it has to be
determined how the energy transfer between the subsystems gets redistributed between the
kinetic and potential energy terms and, therefore, how the temperature evolution is influenced
by strong correlations. In this paper, we will use a quantum-statistical approach to answer
these questions. In particular, we show how the assignment of the correlation energy terms
and the approximation for the electron–ion energy transfer rate are interconnected.

2. General quantum-statistical description of relaxing plasmas

We investigate the evolution of the mean kinetic and potential energies of species ‘a’ for a
coupled systems of electrons and ions. These energies are here defined by3

〈Ka(t)〉 = Tr1{Haρa(t)} and 〈Va(t)〉 = 1

2

∑
b

Tr1,2{Vabρab(t)}. (2)

The energy of species ‘a’ is determined by the one- and two-particle density operators ρa and
ρab, respectively. These operators satisfy the following equations of motion [17]:

ih̄
∂

∂t
ρa = [Ha, ρa] +

∑
b

Tr2{Vab, ρab}, (3)

ih̄
∂

∂t
ρab = [

H 0
ab, ρab

]
+ [Vab, ρab] +

∑
c

Tr3{(Vac + Vbc), ρabc}. (4)

It is our goal to determine the evolution of the species temperatures or the kinetic energies
〈Ka(t)〉. If Zab denotes the transfer rate of total energy between the subsystems ‘a’ and ‘b’,
we have to find expressions of the form

∂

∂t
〈Ka(t)〉 +

∂

∂t
〈Va(t)〉 =

∑
b

Zab. (5)

To this end, we apply the equation of motion of the one-particle density operator (3) in the
definition of the kinetic energy (2) and obtain by using the cyclical invariance of the trace
∂

∂t
〈Ka〉 = 1

ih̄
Tr1{Ha[Ha, ρa]} +

1

ih̄

∑
b

Tr1,2{Ha[Vab, ρab]}

= 1

2ih̄

∑
b

Tr1,2{(Ha + Hb)[Vab, ρab]} + Tr1,2{(Ha − Hb)[Vab, ρab]}. (6)

3 While the first definition is obvious, the second has to be further justified.
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We will now show that the first term in the second line can be identified with the time derivative
of the potential energy of species ‘a’ as defined by equation (2) and that the second term is the
energy transfer rate Zab.

3. Identifying the potential energy contribution

Now we show that the first term in equation (6) can be identified with the negative time
derivative of the potential energy of species ‘a’. To this goal, we use the equation of motion
for the two-particle density operator (4) and find

1

2ih̄

∑
b

Tr1,2{(Ha + Hb)[Vab, ρab]} = − 1

2ih̄

∑
b

Tr1,2{Vab[(Ha + Hb), ρab]}

= +
1

2ih̄

∑
b

Tr1,2{Vab[Vab, ρab]} +
1

2ih̄

∑
b,c

Tr1,2,3{Vab[(Vac + Vbc), ρabc]}

− 1

2

∂

∂t

∑
b

Tr1,2{Vabρab} ≡ − ∂

∂t
〈Va〉. (7)

The first term in the second line vanishes due to the cyclical invariance of the trace and the
second due to a combination of the trace properties and the summation over particle species
‘b’ and ‘c’.

For classical systems, it is often convenient to relate the potential energy of the species
‘a’ to the time-dependent pair distribution function gab(t):

〈Va(t)〉 = 1

2

∑
b

nanb

∫
drVab[gab(r, t) − 1]. (8)

Analytic expressions for the pair distribution exist only for weakly coupled plasmas [18];
otherwise, it has to be calculated numerically, e.g. by generalized integral equations.

4. Identifying the electron–ion energy transfer rate

Now the second term of equation (6) is transformed into a more convenient form. Obviously,
the terms with a = b vanish. For the further calculation, it is useful to separate the correlation
part of the density operator, i.e.,

ρab = ρaρb + ρcorr
ab = ρaρb + ih̄L<

ab(t, t
′)|t=t ′ , (9)

where ih̄L<
ab(t, t

′) = 〈δ�b(2t ′)δ�a(1t)〉 is the density–density correlation function. Using the
equation of motion for this correlation function and the commutation relations of the field
operators, we obtain for homogeneous plasmas

Zab ≡ 1

2ih̄
Tr1,2{(Ha(1) − Hb(2))[Vab, ρab]}

= ih̄

2
Tr1,2Vab

{(
∂

∂t
− ∂

∂t ′

)
L<

ab(t, t
′)
}∣∣∣∣

t=t ′
. (10)

Evaluating the trace in coordinate space and introducing the Fourier transform with respect to
the relative coordinate r1 − r2 and time difference t − t ′, we finally obtain

Zab(t) = 2V Im
∫

d3q

(2πh̄)3

∫ ∞

0

dω

2π
ωVab(q)ih̄L<

ab(q;ω, t). (11)

This is a very general form for the energy transfer rates.
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There exist well-known approximation schemes for the density response function Lab [17].
In the lowest order approximation, we have L<

ei = L<
e VeiLA

i + LR
e VeiL<

i . With the connection
to the density of states given by ih̄L<

a = Aa(ω, Ti)nB(ω/Ta) and −2 ImLR
a (ω, Ta) =

Aa(ω, Ta), one obtains the well-known Fermi-golden-rule formula. The effects of coupled
collective modes (see also [10]) can be described applying a more general approximation for
L<

ab in equation (11).
Obviously, we have obtained the desired form (5) for the evolution of the species energies.

It is demonstrated that a consistent description of equilibration in dense plasmas must include
potential energy contributions in the form (2). Such a treatment should also be applied to
tackle problems like the rapid build-up of correlations and screening in the beginning of the
relaxation.
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